In computer science, a search algorithm is an algorithm designed to solve a search problem. Search algorithms work to retrieve information stored within particular data structure, or calculated in the Feasible region of a problem domain, with either discrete or continuous values.
Although search engines use search algorithms, they belong to the study of information retrieval, not algorithmics.
The appropriate search algorithm to use often depends on the data structure being searched, and may also include prior knowledge about the data. Search algorithms can be made faster or more efficient by specially constructed database structures, such as , , and .
Search algorithms can be classified based on their mechanism of searching into three types of algorithms: linear, binary, and hashing. Linear search algorithms check every record for the one associated with a target key in a linear fashion. Binary, or half-interval, searches repeatedly target the center of the search structure and divide the search space in half. Comparison search algorithms improve on linear searching by successively eliminating records based on comparisons of the keys until the target record is found, and can be applied on data structures with a defined order. Digital search algorithms work based on the properties of digits in data structures by using numerical keys. Finally, Hash table directly maps keys to records based on a hash function.
Algorithms are often evaluated by their computational complexity, or maximum theoretical run time. Binary search functions, for example, have a maximum complexity of , or logarithmic time. In simple terms, the maximum number of operations needed to find the search target is a logarithmic function of the size of the search space.
An important subclass are the local search methods, that view the elements of the search space as the vertices of a graph, with edges defined by a set of heuristics applicable to the case; and scan the space by moving from item to item along the edges, for example according to the gradient descent or best-first criterion, or in a stochastic search. This category includes a great variety of general metaheuristic methods, such as simulated annealing, tabu search, A-teams, and genetic programming, that combine arbitrary heuristics in specific ways. The opposite of local search would be global search methods. This method is applicable when the search space is not limited and all aspects of the given network are available to the entity running the search algorithm.
This class also includes various Tree traversal, that view the elements as vertices of a tree, and traverse that tree in some special order. Examples of the latter include the exhaustive methods such as depth-first search and breadth-first search, as well as various heuristic-based search tree pruning methods such as backtracking and branch and bound. Unlike general metaheuristics, which at best work only in a probabilistic sense, many of these tree-search methods are guaranteed to find the exact or optimal solution, if given enough time. This is called "completeness".
Another important sub-class consists of algorithms for exploring the game tree of multiple-player games, such as chess or backgammon, whose nodes consist of all possible game situations that could result from the current situation. The goal in these problems is to find the move that provides the best chance of a win, taking into account all possible moves of the opponent(s). Similar problems occur when humans or machines have to make successive decisions whose outcomes are not entirely under one's control, such as in robot guidance or in marketing, finance, or military strategy planning. This kind of problem — combinatorial search — has been extensively studied in the context of artificial intelligence. Examples of algorithms for this class are the Minimax, alpha–beta pruning, and the A* algorithm and its variants.
Another important subclass of this category are the string searching algorithms, that search for patterns within strings. Two famous examples are the Boyer–Moore and Knuth–Morris–Pratt algorithms, and several algorithms based on the suffix tree data structure.
|
|